5x^2-10+4x^2-3x+x=180

Simple and best practice solution for 5x^2-10+4x^2-3x+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2-10+4x^2-3x+x=180 equation:



5x^2-10+4x^2-3x+x=180
We move all terms to the left:
5x^2-10+4x^2-3x+x-(180)=0
We add all the numbers together, and all the variables
9x^2-2x-190=0
a = 9; b = -2; c = -190;
Δ = b2-4ac
Δ = -22-4·9·(-190)
Δ = 6844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6844}=\sqrt{4*1711}=\sqrt{4}*\sqrt{1711}=2\sqrt{1711}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{1711}}{2*9}=\frac{2-2\sqrt{1711}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{1711}}{2*9}=\frac{2+2\sqrt{1711}}{18} $

See similar equations:

| 3|-8-5z|-2=1 | | 1/2x+|-3|=7 | | 1/2+a=1/3/4 | | 1/2+a=13/4 | | b+2.25=10.6 | | 19u+7=12u+14 | | 5z-7=43 | | z−14=2z | | 9b−7b=20 | | 3z+8=5z-16z= | | -15k−-2k=13 | | 10x=-6- | | 5t=4t+11 | | 2(4x+8)=9x-27 | | x+5=9x-1 | | -3(t−12)=-9 | | 5x+10=7.5 | | v+5.93=8.15 | | 3x(6÷5=) | | 7+2y-17=180 | | 2(1+3y)=-14-2y | | x×x-8x+60=0 | | 12+x*8=84 | | 20-2n=28+2n | | 4x=25-2x | | 9-7x=29 | | 8x^2+6x=−5 | | -64z=-15-4z | | -1+4x+12=0 | | 2(3x-10)=26 | | 13=8p-15-7p | | 10y+15=7y+3 |

Equations solver categories